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We show that a parametrically driven cubic-quintic complex Ginzburg-Landau equation exhibits a hysteretic
nonequilibrium Ising-Bloch transition for large enough quintic nonlinearity. These results help to understand
the recent experimental observation of this pheomenon �A. Esteban-Martín et al., Phys. Rev. Lett. 94, 223903
�2005��.
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Spatially extended bistable systems with broken phase in-
variance display defects in the form of interfaces, so-called
domain walls �DWs�. A paradigm for the study of DWs is the
parametrically driven complex Ginzburg-Landau equation,
which can be written in the form �1�

�tA = �A* + �� + i��A + �1 + i���x
2A − �1 + i���A�2A , �1�

where � is the parametric pump, � accounts for linear gain
or loss, depending on its sign, � is a detuning, � is the dif-
fraction coefficient, and � is the nonlinear dispersion coeffi-
cient. In writing Eq. �1�, the spatial coordinate and the field
amplitude have been normalized to the square root of the
diffusion coefficient and of the saturation coefficient, respec-
tively. This equation represents a universal description of
parametrically excited waves �2� as well as of the close to
threshold dynamics of self-oscillatory systems externally
forced at the second harmonic of the natural oscillation fre-
quency �1�.

In Eq. �1�, the phase invariance of the field A�x , t� is bro-
ken because of the presence of the parametric term �A*; i.e,
Eq. �1� shows the discrete symmetry A↔−A. This makes
possible the existence of domain walls that connect spatial
regions where the field passes from, e.g., the homogeneous
solution A0 to the equivalent symmetric solution −A0. There
are two types of DWs, namely, Ising and Bloch walls, which
differ in the way the field crosses the complex zero at the
DW core: In the Ising wall, both the real and the imaginary
parts of the field become null, while in the Bloch wall the
real and the imaginary parts become null at different spatial
points. Thus, in terms of the field intensity, �A�2, an Ising wall
is dark at its center while it is gray in the case of a Bloch
wall. However, the most striking difference between Ising
and Bloch walls lies in their different dynamic behavior:
When nonvariational terms are present �in Eq. �1� this means
that �, �, or � is different from zero� Bloch walls move,
while Ising walls remain at rest.

Coullet et al. �1� have discussed the above in detail for
��0 and have shown how Ising walls bifurcate into Bloch
walls through the so-called nonequilibrium Ising-Bloch tran-
sition �NIBT�, which takes its name from the equilibrium
Ising-Bloch transition occurring in ferromagnets �3�. Subse-
quently, it was also shown that the NIBT occurs in Eq. �1�

for negative � �2�, in which case DWs connect not only
symmetric homogeneous solutions but also spatially modu-
lated solutions.

There are a few experimental observations of this phe-
nomenon. As far as we know, it has been reported only in
liquid crystals �4� either subjected to rotating magnetic fields,
�5,6� or to an alternate electrical voltage �7�. This last experi-
ment constitutes a particularly clear observation of the NIBT
free from two-dimensional effects, which complicate front
dynamics through curvature effects. We must add our very
recent observation of a hysteretic Ising-Bloch transition in a
nonlinear optical cavity �8�. This last experiment was carried
out in a photorefractive oscillator in a degenerate four-wave
mixing configuration �8–10� and the cavity detuning played
the role of the control parameter. We found that for small
positive cavity detuning the system exhibits Ising walls.
When detuning was increased, Ising walls bifurcated into
Bloch walls at a cavity detuning value �IB, and for ���IB
DWs were always of Bloch type. When making a reverse
detuning scan, we found that Bloch walls existed up to a
detuning value �BI where another Ising-Bloch transition oc-
curs. It is interesting to note that �BI��IB, and that there is a
detuning domain, �BI����IB, where Ising and Bloch walls
coexist.

The origin of the hysteresis was experimentally found to
lie in the existence of bistability in the homogeneous state of
the system: The homogeneous state exhibits bistability
within a certain cavity detuning range between two spatially
homogeneous states, say Ahom,1 and Ahom,2, with �Ahom,1�2
� �Ahom,2�2. It happens that DWs connecting Ahom,1 with
−Ahom,1 are of Ising type, while those connecting Ahom,2 with
−Ahom,2 are of Bloch type. Equation �1� does not give any
insight into this type of behavior as the NIBT it exhibits is
not hysteretic nor does its homogeneous solution exhibit bi-
stability of the type we are describing. Here we try to shed
some light onto this problem by considering a straightfor-
ward generalization of Eq. �1�.

Hysteretic Ising-Bloch transitions have been theoretically
described recently in two very different contexts. On the one
hand, it has been described in the anisotropic XY-spin sys-
tem in an oscillatory magnetic field �11�. In that paper, Eq.
�1� is studied for �=�=�=0 plus an additional modulation
term. As the system under study is variational, Bloch walls
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do not move and the hysteresis is found on the average os-
cillation period of the DW for certain parameter sets. On the
other hand, hysteresis has also been found in the routes lead-
ing from standing fronts to a couple of counterpropagating
ones in two discrete models �an array of Lorenz units and the
FitzHugh-Nagumo model� in Ref. �12� and also in Ref. �13�.
These previous theoretical results do not help to understand
the experimental results in �8� that we have just resumed. As
already outlined in �8�, we will show that the addition of a
quintic nonlinearity in Eq. �1� allows us to understand quali-
tatively the experimental results.

We start with the following natural generalization of Eq.
�1�:

�tA = �A* + �� + i��A + �1 + i���x
2A

− �1 + i�3��A�2A − ��5 + i�5��A�4A; �2�

i.e., we have added a fifth-order nonlinearity with �5 and �5
the quintic saturation and nonlinear dispersion coefficients,
respectively. As we are interested in the minimal modifica-
tion of Eq. �1� that contains a hysteretic NIBT, in the follow-
ing we shall concentrate on the special case �5=0, as the
addition of the quintic nonlinear dispersion term is enough
for our purposes, as we show next.

In Fig. 1 we represent the square modulus of the homo-
geneous solution of Eq. �2� as a function of detuning � for
�=2, �=�=−�3=1 and the different values of �5 indicated
in the figure inset. Notice that there are two regions in which
the homogeneous solution is multivalued: For negative de-
tuning, where there is coexistence between two homoge-
neous solution values and the trivial solution, and also for
positive detuning whenever �5��5

c �0.394 28, where there
is coexistence of three homogeneous solutions. We find that
the latter requires that the signs of the nonlinear dispersion
coefficients, �3 and �5 are different, and will concentrate
on this case. Note that Eq. �2� holds the symmetry
�A ,� ,� ,�3 ,�5�↔ �A* ,−� ,−� ,−�3 ,−�5� and consequently,
the behavior of the homogeneous solution is the same for the
parameter sets �� ,�3 ,�5� and �−� ,−�3 ,−�5�.

The numerical integration of Eq. �2� shows that for nega-
tive detuning �, the system exhibits extended patterns and
that the homogeneous solution can be stable for positive �.
Thus, it is for ��0 that we can find DWs connecting homo-

geneous solutions and we concentrate in this case �notice that
for �5=0, this is the parameter region, ��0, where the
NIBT was studied in �1,2��.

We have carried out the numerical integration of Eq. �2�
for �=2, �=�=1 and different values of �3 and �5. We
comment first on our results for �3=−1 and different values
of �5 and �.

In Fig. 2 we represent again the homogeneous steady state
for the same parameters as in Fig. 1 �except for the values of
�5�, and have marked the different patterns one can observe.
For �5=0.38��5

c �Fig. 2�a��, the homogeneous solution is
single valued and two types of DWs are observed: Ising
walls �IW in the figure� for detunings �	1.24 and Bloch
walls �BW� for ��1.24. For ��1.53, the homogeneous so-
lution becomes modulationally unstable; Bloch walls con-
nect patterns in this region. In Fig. 3 both the intensity and
phase spatial profiles corresponding to an Ising wall �Fig.
3�a�� and a Bloch wall �Fig. 3�b�� are represented. Notice that
the field intensity is null at the DW core only in the Ising
wall, and that the phase jump is sharp �smooth� for the Ising
�Bloch� wall. It is also interesting to notice the shoulder in
the field intensity in the case of the Bloch wall �the shoulder
appears on the back side of the wall with respect to the
direction of movement�.

As the value of �5 is increased, different features appear.
For �5=0.395 �i.e., slightly larger that �5

c� the homogeneous
solution becomes multivalued �Fig. 2�b�; the dashed line in-
dicates that the homogeneous solution is unstable�. In this
case Ising walls do not bifurcate directly into moving Bloch
walls, but start oscillating periodically around a fixed posi-

FIG. 1. Homogeneous solution intensity as a function of detun-
ing for �=2, �=�=−�3=1 and �5=0.35 �i�, �5=0.39428 �ii�, and
�5=0.45 �iii�, which is an enlargement of a part of the positive
detuning domain.

FIG. 2. Homogeneous solution intensity for the same parameter
values as Fig. 1 except for �5, which are marked in the figure. The
different pattern domains are marked as IW �Ising walls�, BW
�Bloch walls�, OW �oscillating walls�, and P �patterns�. The con-
tinuous �dashed� line indicates stable �unstable� homogeneous
solution.
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tion, that is, there is not a net displacement of the wall.
Figure 4 shows the intensity and phase profiles of the oscil-
lating wall in three different instants of time and it can be
appreciated how the wall passes from a clear Bloch character
�smooth phase jump� when it is at the center of the oscilla-
tion �Fig. 4�b�� to a clear Ising character �sharp phase jump�
when it is at the extremes of the oscillation �Figs. 4�a� and
4�c��.

The behavior just described appears when �5��5
c. When

�5 is further increased a remarkable effect appears: There is
a detuning range of coexistence between the oscillating and

the Bloch walls �see Fig. 2�c��. This is better appreciated in
Fig. 5 where the velocity of the walls is represented as a
function of detuning for the same parameters as in Fig. 2. In
Figs. 5�a� and 5�b� the behavior of the velocity closely fol-
lows that of the standard NIBT �1,2�, but in Fig. 5�c� the
phenomenon of the hysteretic NIBT is clearly appreciated.

In the case we have described no coexistence between
Ising and Bloch walls is observed: only between oscillating
and Bloch walls. However, by decreasing the value of �3
from −1 to −1.5 we can observe this coexistence. In Fig. 6
we represent again the wall velocity as a function of detun-
ing for the same values as in Fig. 2 except for �3=−1.5 and
�5=0.6. The behavior is similar to that described above, but
now there appears a wide domain of coexistence between
Bloch walls and both oscillating and Ising walls. This is a
much clearer hysteretic NIBT.

In conclusion, our results show that the addition of a quin-
tic nonlinear dispersion term to the parametrically driven

FIG. 3. Intensity �full line� and phase �dashed line� spatial pro-
files of an Ising �a� and a Bloch �b� wall for the same parameters as
Fig. 2�a� and the detuning values marked in the figure.

FIG. 4. Intensity �full line� and phase �dashed line� profiles of an
oscillating wall at three different instants of time �see text�. The
parameters are the same as in Fig. 2�b� and �=1.29.

FIG. 5. Velocity of the domain walls as a function of detuning
for the same parameter values as in Fig. 2. The gray areas mark the
velocity of the oscillating walls. The arrows mark the transition
from Bloch walls to oscillating walls when a decreasing detuning
scan is carried out.

FIG. 6. Velocity of the domain walls as a function of detuning
for �=2, �=�=1, �3=−1.5, and �5=0.6.
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complex Ginzburg-Landau equation suffices for obtaining a
hysteretic nonequilibrium Ising-Bloch transition �HNIBT�, a
phenomenon previously observed in �8�. As a fifth-order
nonlinearity represents the simplest, higher order correction
to the usual complex Ginzburg-Landau, and the latter is of
wide applicability in physical and chemical systems, the
HNIBT could be well observed in other systems. There re-
mains the question of up to what extent Eq. �2� can be taken
as a model of the photorefractive oscillator in degenerate
four-wave mixing configuration used in �8�. We do not claim
this as the photorefractive nonlinearity is more complicated
�saturating-like� than the one included in Eq. �2�. Neverthe-
less, the presence of third- and fifth-order nonlinearities can
be considered as an expansion of the photorefractive nonlin-

earity �14�. Let us, however, stress that the results presented
in this Brief Report qualitatively describe the experimental
observations, even reproducing such small details as the
shoulder in the field intensity in the case of the Bloch wall
�Fig. 3�, which has been repeatedly observed during the
experiments in �8�.
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